Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

r-2,c-6-Bis(3-fluorophenyl)-t-3,t-5dimethylpiperidin-4-one

R. Ramachandran,^a P. Parthiban,^a Adinarayana Doddi,^b V. Ramkumar^b and S. Kabilan^a*

^aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and ^bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India

Correspondence e-mail: prskabilan@rediffmail.com

Received 19 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.047; wR factor = 0.161; data-to-parameter ratio = 12.0.

The F atoms in the title compound, C₁₉H₁₇F₂NO, attached to the meta positions of the two phenyl rings, are disordered with site occupancy factors of 0.5. The crystal is stabilized by strong intermolecular N-H···O and van der Waals interactions.

Related literature

For related literature, see: Buxton & Roberts (1996); Dunitz & Taylor (1997); Evans & Seddon (1997); Ganellin & Spickett (1965); Kalsi (1997); Noller & Baliah (1948); Pham et al. (1998).

Experimental

Crystal data

 $C_{19}H_{17}F_2NO$ $M_r = 313.34$ Monoclinic, C2/c a = 22.2891 (4) Å b = 7.0516 (1) Å c = 23.4565 (4) Å $\beta = 117.711 \ (2)^{\circ}$

V = 3263.89 (9) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$ T = 298 (2) K $0.28 \times 0.25 \times 0.23 \mbox{ mm}$

Data collection

Bruker APEXII CCD area-detector	18121 measured reflections
diffractometer	2795 independent reflections
Absorption correction: multi-scan	2337 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.024$
$T_{\min} = 0.924, \ T_{\max} = 0.983$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$vR(F^2) = 0.161$	independent and constrained
S = 1.09	refinement
2795 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
232 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1^{i}$	0.95 (2)	2.34 (2)	3.2785 (18)	169.7 (16)

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection. We are thankful to Dr Babu Varghese, SAIF, IIT Madras, for his valuable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2176).

References

- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Buxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry. London: Longman.
- Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89-98.

Evans, T. A. & Seddon, K. R. (1997). J. Chem. Soc. Chem. Commun. pp. 2023-2024.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.
- Kalsi, P. S. (1997). Spectrochemistry: Conformation and Mechanism. New Delhi: New Age International.
- Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.
- Pham, M., Gdaniec, M. & Polonski, T. (1998). J. Org. Chem. 63, 3731-3734.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4559 [doi:10.1107/S1600536807054165]

r-2,c-6-Bis(3-fluorophenyl)-t-3,t-5-dimethylpiperidin-4-one

R. Ramachandran, P. Parthiban, A. Doddi, V. Ramkumar and S. Kabilan

Comment

Substituted piperidin-4-ones are important synthetic intermediates for the preparation of various alkaloids and pharmaceuticals (Ganellin & Spickett, 1965). Biological activities of the synthesized piperidin-4-one derivatives mainly depends on the substituents on the phenyl rings flanked either side of the secondary nitrogen. Only *ortho* fluoro substituted piperidin-4-one have been reported (Pham *et al.*, 1998), which possess chair conformation.

The biological activities mainly depend on the stereochemistry (Buxton & Roberts, 1996) and the intramolecular and intermolecular hydrogen bonds with the fluorine atoms of the synthesized compound (Dunitz & Taylor, 1997; Evans & Seddon, 1997). In this study, we have incorporated the fluoro substituents at the one of the *meta* positions of the each phenyl groups on either side of the heterocyclic nitrogen to establish the stereochemistry and hydrogen bonding.

In the title compound $C_{19}H_{17}F_2$ N O, the six membered heterocycle adopts a distorted chair conformation. The torsion angles deviate from the value of 56° expected for a perfect chair conformation (Kalsi, 1997). The equatorial dispositions of both methyl and phenyl rings which contain *meta* fluoro substitutents are identified by their torsion angles. The absolute configurations of the chiral atoms C1, C2, C4 and C5 are found to be *R*, S, *R* and S respectively.

According to the modified Mannich reaction reported by Noller & Baliah (1948), we expected to obtain 2,6-bis(3-fluorophenyl)piperidin-4-one by using 3-fluorobenzaldehyde, but the crystal structure reveals that the fluorine atoms occupy either side of the *meta* positions of each phenyl ring with a disordered site-occupancy factor of 0.5 (Fig.1).

In the crystal structure the molecules are inter linked through a strong N—H…O hydrogen bonding (Table 1, Fig.2), and also the molecules are held together by weak van der Waals interactions.

Experimental

The title compound was prepared by the condensation of pentan-3-one, 3-flurobenzaldehyde and ammonium acetate in 1: 2: 1 molar ratio in ethanol as reported by Noller for the similar type of Mannich bases (Noller & Baliah, 1948). Diffraction quality crystal was obtained by recrystalization of the crude sample from ethanol.

Refinement

The *meta* fluoro part of the molecule is disordered over two positions, the disorder refining to a 0.50:0.50 ratio. Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl and aliphatic H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$ and for methyl H atoms at $1.5U_{eq}(C)$.

Figures

Fig. 1. *ORTEP* of the molecule with atoms represented as 50% probability ellipsoids. Hydrogen atoms are shown as atoms of arbitrary size.

Fig. 2. Packing of molecules showing N—H…O interactions.

r-2,c-6-Bis(3-fluorophenyl)t-3,t-5-dimethylpiperidin-4-one

Crystal data	
$C_{19}H_{17}F_2NO$	$F_{000} = 1312$
$M_r = 313.34$	$D_{\rm x} = 1.275 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 8210 reflections
a = 22.2891 (4) Å	$\theta = 3.1 - 28.2^{\circ}$
b = 7.05160 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 23.4565 (4) Å	T = 298 (2) K
$\beta = 117.711 \ (2)^{\circ}$	Block, colourless
$V = 3263.89 (9) \text{ Å}^3$	$0.28\times0.25\times0.23~mm$
Z = 8	

Data collection

Bruker APEXII CCD area-detector diffractometer	2795 independent reflections
Radiation source: fine-focus sealed tube	2337 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -25 \rightarrow 22$
$T_{\min} = 0.924, T_{\max} = 0.983$	$k = -8 \rightarrow 8$
18121 measured reflections	$l = -27 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of

independent and constrained refinement

$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0988P)^2 + 1.2426P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{max} < 0.001$
2795 reflections	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
232 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.10456 (8)	0.8562 (2)	0.14454 (8)	0.0382 (4)	
H1	0.1258	0.8697	0.1915	0.046*	
C2	0.09171 (8)	1.0563 (2)	0.11377 (9)	0.0445 (4)	
H2	0.0751	1.0404	0.0674	0.053*	
C3	0.15962 (9)	1.1548 (2)	0.14083 (8)	0.0443 (4)	
C4	0.21485 (9)	1.0504 (2)	0.13318 (9)	0.0467 (4)	
H4	0.2019	1.0467	0.0871	0.056*	
C5	0.21931 (8)	0.8427 (2)	0.15674 (8)	0.0389 (4)	
Н5	0.2371	0.8430	0.2036	0.047*	
C6	0.03966 (8)	0.7444 (2)	0.12237 (8)	0.0411 (4)	
C7	-0.00105 (10)	0.7053 (3)	0.05773 (9)	0.0555 (5)	
H7	0.0122	0.7434	0.0273	0.067*	
C8	-0.06142 (10)	0.6095 (3)	0.03868 (11)	0.0664 (6)	
C9	-0.08187 (10)	0.5475 (3)	0.08220 (11)	0.0624 (6)	
Н9	-0.1224	0.4821	0.0689	0.075*	
C10	-0.04097 (10)	0.5845 (3)	0.14551 (11)	0.0616 (6)	
C11	0.01918 (9)	0.6832 (2)	0.16639 (10)	0.0503 (5)	
H11	0.0457	0.7082	0.2100	0.060*	
C12	0.26636 (9)	0.7275 (2)	0.14005 (9)	0.0435 (4)	
C13	0.33343 (9)	0.6997 (3)	0.18524 (11)	0.0568 (5)	
H13	0.3495	0.7472	0.2268	0.068*	
C14	0.37635 (10)	0.6011 (3)	0.16827 (13)	0.0693 (6)	
C15	0.35459 (12)	0.5283 (3)	0.10790 (14)	0.0726 (7)	
H15	0.3841	0.4628	0.0971	0.087*	

supplementary materials

C16	0.28812 (13)	0.5545 (3)	0.06381 (12)	0.0701 (6)	
C17	0.24403 (10)	0.6536 (3)	0.07888 (10)	0.0563 (5)	
H17	0.1992	0.6708	0.0479	0.068*	
C18	0.03924 (10)	1.1699 (3)	0.12326 (12)	0.0623 (6)	
H18A	0.0495	1.1658	0.1678	0.093*	
H18B	-0.0049	1.1167	0.0973	0.093*	
H18C	0.0399	1.2991	0.1107	0.093*	
C19	0.28239 (12)	1.1518 (3)	0.16720 (15)	0.0802 (8)	
H19A	0.2761	1.2842	0.1566	0.120*	
H19B	0.3134	1.0988	0.1536	0.120*	
H19C	0.3005	1.1365	0.2129	0.120*	
F1	-0.10284 (15)	0.5924 (5)	-0.01925 (14)	0.1008 (10)	0.50
F1A	-0.06167 (13)	0.5306 (4)	0.18482 (13)	0.0796 (8)	0.50
F2	0.43768 (15)	0.5665 (5)	0.21028 (18)	0.1115 (12)	0.50
F2A	0.26635 (16)	0.4710 (4)	0.00831 (14)	0.0883 (9)	0.50
N1	0.15164 (7)	0.75695 (18)	0.12719 (7)	0.0406 (4)	
01	0.16979 (7)	1.30766 (17)	0.16775 (8)	0.0638 (4)	
H1A	0.1522 (10)	0.630 (3)	0.1400 (9)	0.060 (6)*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0348 (8)	0.0340 (8)	0.0452 (9)	0.0019 (6)	0.0181 (7)	0.0023 (6)
C2	0.0432 (9)	0.0339 (9)	0.0553 (10)	0.0061 (7)	0.0219 (8)	0.0053 (7)
C3	0.0528 (10)	0.0281 (8)	0.0564 (10)	0.0026 (7)	0.0291 (9)	0.0060 (7)
C4	0.0503 (10)	0.0349 (9)	0.0655 (11)	-0.0019 (7)	0.0358 (9)	0.0023 (7)
C5	0.0355 (8)	0.0350 (8)	0.0476 (9)	0.0001 (6)	0.0204 (7)	0.0024 (6)
C6	0.0345 (9)	0.0326 (8)	0.0544 (10)	0.0042 (6)	0.0191 (8)	0.0007 (7)
C7	0.0506 (11)	0.0536 (10)	0.0556 (11)	-0.0062 (8)	0.0189 (9)	0.0021 (8)
C8	0.0451 (11)	0.0588 (12)	0.0700 (14)	-0.0056 (9)	0.0055 (10)	-0.0035 (10)
C9	0.0373 (10)	0.0522 (11)	0.0937 (16)	-0.0067 (8)	0.0271 (11)	-0.0111 (10)
C10	0.0477 (11)	0.0570 (11)	0.0918 (16)	-0.0066 (9)	0.0423 (12)	-0.0098 (10)
C11	0.0445 (10)	0.0498 (10)	0.0611 (11)	-0.0037 (8)	0.0284 (9)	-0.0058 (8)
C12	0.0409 (9)	0.0336 (8)	0.0615 (11)	0.0008 (7)	0.0284 (8)	0.0052 (7)
C13	0.0420 (10)	0.0563 (11)	0.0719 (13)	0.0046 (8)	0.0265 (9)	0.0074 (9)
C14	0.0443 (11)	0.0614 (12)	0.1080 (19)	0.0127 (9)	0.0404 (12)	0.0151 (12)
C15	0.0716 (15)	0.0526 (11)	0.123 (2)	0.0112 (10)	0.0703 (15)	0.0056 (12)
C16	0.0767 (15)	0.0579 (12)	0.0961 (17)	0.0046 (10)	0.0574 (14)	-0.0070 (11)
C17	0.0516 (11)	0.0530 (10)	0.0689 (13)	0.0042 (8)	0.0317 (10)	-0.0066 (9)
C18	0.0498 (11)	0.0421 (10)	0.0942 (15)	0.0109 (8)	0.0328 (11)	0.0025 (9)
C19	0.0645 (14)	0.0447 (11)	0.150 (2)	-0.0121 (9)	0.0655 (15)	-0.0101 (12)
F1	0.089 (2)	0.109 (2)	0.0782 (19)	-0.0390 (18)	0.0159 (16)	-0.0186 (16)
F1A	0.0718 (16)	0.105 (2)	0.0896 (17)	-0.0439 (14)	0.0609 (14)	-0.0249 (15)
F2	0.0576 (18)	0.140 (3)	0.132 (3)	0.0327 (18)	0.0401 (18)	0.013 (2)
F2A	0.110 (2)	0.0906 (19)	0.0861 (18)	0.0161 (16)	0.0635 (17)	-0.0242 (15)
N1	0.0372 (8)	0.0291 (7)	0.0569 (9)	0.0016 (5)	0.0231 (7)	0.0009 (6)
01	0.0676 (9)	0.0369 (7)	0.0964 (11)	-0.0052 (6)	0.0462 (8)	-0.0112 (7)

Geometric parameters (Å, °)

C1—N1	1.468 (2)	С9—Н9	0.9300
C1—C6	1.511 (2)	C10—F1A	1.266 (3)
C1—C2	1.550 (2)	C10—C11	1.382 (3)
C1—H1	0.9800	C11—H11	0.9300
C2—C3	1.511 (2)	C12—C17	1.384 (3)
C2—C18	1.517 (2)	C12—C13	1.387 (3)
С2—Н2	0.9800	C13—C14	1.383 (3)
C3—O1	1.216 (2)	С13—Н13	0.9300
C3—C4	1.515 (2)	C14—F2	1.283 (4)
C4—C19	1.515 (3)	C14—C15	1.366 (4)
C4—C5	1.552 (2)	C15—C16	1.369 (3)
C4—H4	0.9800	С15—Н15	0.9300
C5—N1	1.466 (2)	C16—F2A	1.300 (3)
C5—C12	1.515 (2)	C16—C17	1.379 (3)
С5—Н5	0.9800	C17—H17	0.9300
C6—C11	1.378 (3)	C18—H18A	0.9600
C6—C7	1.385 (3)	C18—H18B	0.9600
С7—С8	1.381 (3)	C18—H18C	0.9600
С7—Н7	0.9300	C19—H19A	0.9600
C8—F1	1.244 (3)	C19—H19B	0.9600
C8—C9	1.369 (3)	С19—Н19С	0.9600
C9—C10	1.359 (3)	N1—H1A	0.95 (2)
N1—C1—C6	110.45 (13)	F1AC10C9	116.8 (2)
N1—C1—C2	107.83 (13)	F1A-C10-C11	121.0 (2)
C6—C1—C2	112.00 (13)	C9—C10—C11	122.1 (2)
N1—C1—H1	108.8	C6—C11—C10	119.79 (19)
С6—С1—Н1	108.8	С6—С11—Н11	120.1
С2—С1—Н1	108.8	C10—C11—H11	120.1
C3—C2—C18	112.69 (14)	C17—C12—C13	118.64 (17)
C3—C2—C1	106.91 (13)	C17—C12—C5	120.78 (16)
C18—C2—C1	113.61 (15)	C13—C12—C5	120.54 (17)
С3—С2—Н2	107.8	C14—C13—C12	119.7 (2)
С18—С2—Н2	107.8	C14—C13—H13	120.2
С1—С2—Н2	107.8	C12—C13—H13	120.2
O1—C3—C2	122.27 (15)	F2	117.5 (3)
O1—C3—C4	121.79 (16)	F2-C14-C13	120.5 (3)
C2—C3—C4	115.93 (14)	C15—C14—C13	121.9 (2)
C3—C4—C19	111.81 (15)	C14—C15—C16	118.05 (19)
C3—C4—C5	109.72 (13)	C14—C15—H15	121.0
C19—C4—C5	111.96 (16)	C16—C15—H15	121.0
C3—C4—H4	107.7	F2A—C16—C15	117.7 (2)
С19—С4—Н4	107.7	F2A—C16—C17	120.5 (2)
С5—С4—Н4	107.7	C15—C16—C17	121.6 (2)
N1—C5—C12	109.89 (13)	C16—C17—C12	120.1 (2)
N1—C5—C4	109.85 (13)	С16—С17—Н17	120.0
C12—C5—C4	110.57 (13)	C12—C17—H17	120.0

supplementary materials

N1—C5—H5	108.8	C2-C18-H18A		109.5
С12—С5—Н5	108.8	C2-C18-H18B		109.5
С4—С5—Н5	108.8	H18A—C18—H18B		109.5
C11—C6—C7	118.76 (16)	C2-C18-H18C		109.5
C11—C6—C1	120.20 (15)	H18A—C18—H18C		109.5
C7—C6—C1	121.02 (16)	H18B-C18-H18C		109.5
C8—C7—C6	119.69 (19)	C4—C19—H19A		109.5
С8—С7—Н7	120.2	C4—C19—H19B		109.5
С6—С7—Н7	120.2	H19A—C19—H19B		109.5
F1C8C9	116.6 (2)	C4—C19—H19C		109.5
F1—C8—C7	121.2 (3)	H19A—C19—H19C		109.5
C9—C8—C7	121.8 (2)	H19B-C19-H19C		109.5
C10—C9—C8	117.82 (18)	C5—N1—C1		112.54 (12)
С10—С9—Н9	121.1	C5—N1—H1A		112.6 (12)
С8—С9—Н9	121.1	C1—N1—H1A		105.6 (12)
N1—C1—C2—C3	-59.72 (17)	C8—C9—C10—F1A		178.1 (2)
C6—C1—C2—C3	178.56 (14)	C8-C9-C10-C11		0.7 (3)
N1—C1—C2—C18	175.32 (15)	C7-C6-C11-C10		0.1 (3)
C6—C1—C2—C18	53.6 (2)	C1-C6-C11-C10		178.65 (15)
C18—C2—C3—O1	0.8 (2)	F1A-C10-C11-C6		-178.4 (2)
C1—C2—C3—O1	-124.69 (18)	C9—C10—C11—C6		-1.1 (3)
C18—C2—C3—C4	-179.93 (15)	N1-C5-C12-C17		40.4 (2)
C1—C2—C3—C4	54.55 (19)	C4—C5—C12—C17		-81.0 (2)
O1—C3—C4—C19	4.6 (3)	N1-C5-C12-C13		-141.82 (16)
C2—C3—C4—C19	-174.68 (17)	C4—C5—C12—C13		96.75 (19)
O1—C3—C4—C5	129.41 (17)	C17—C12—C13—C14		0.5 (3)
C2—C3—C4—C5	-49.8 (2)	C5-C12-C13-C14		-177.24 (17)
C3—C4—C5—N1	49.75 (19)	C12—C13—C14—F2		-176.8 (3)
C19—C4—C5—N1	174.51 (16)	C12—C13—C14—C15		-0.4 (3)
C3—C4—C5—C12	171.21 (14)	F2-C14-C15-C16		176.1 (3)
C19—C4—C5—C12	-64.0 (2)	C13—C14—C15—C16		-0.4 (3)
N1—C1—C6—C11	120.53 (16)	C14—C15—C16—F2A		-174.2 (2)
C2—C1—C6—C11	-119.27 (16)	C14—C15—C16—C17		0.9 (3)
N1—C1—C6—C7	-61.0 (2)	F2A-C16-C17-C12		174.2 (2)
C2—C1—C6—C7	59.2 (2)	C15—C16—C17—C12		-0.8 (3)
C11—C6—C7—C8	1.1 (3)	C13—C12—C17—C16		0.0 (3)
C1—C6—C7—C8	-177.39 (16)	C5-C12-C17-C16		177.81 (17)
C6—C7—C8—F1	171.2 (3)	C12—C5—N1—C1		176.82 (12)
C6—C7—C8—C9	-1.5 (3)	C4-C5-N1-C1		-61.31 (17)
F1-C8-C9-C10	-172.4 (3)	C6-C1-N1-C5		-170.52 (13)
C7—C8—C9—C10	0.6 (3)	C2—C1—N1—C5		66.81 (17)
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O1 ⁱ	0.95 (2)	2.34 (2)	3.2785 (18)	169.7 (16)
Symmetry codes: (i) $x, y-1, z$.				

